Back to Blog
Technical7 min readNov 10, 2024

API Security: Protecting Your Integration Points

Learn how to securely integrate threat intelligence APIs into your security stack.

Engineering Team

SocialEye

Introduction

Integrating threat intelligence APIs into your security stack can dramatically enhance your defensive capabilities. However, these integrations also create potential attack surfaces that must be properly secured.

This guide covers best practices for securely implementing and operating threat intelligence API integrations.

API Authentication Best Practices

API Key Management

Your API keys are as sensitive as passwords. Treat them accordingly:

Do:

  • Store keys in secure vaults (HashiCorp Vault, AWS Secrets Manager)
  • Rotate keys regularly (quarterly at minimum)
  • Use different keys for different environments
  • Monitor key usage for anomalies

Don't:

  • Commit keys to version control
  • Share keys via email or chat
  • Use the same key across multiple applications
  • Store keys in plaintext configuration files

Implementation Example

# Good: Loading from environment/secrets manager
import os
from your_secrets_manager import get_secret

api_key = get_secret("socialeye_api_key")
# or
api_key = os.environ.get("SOCIALEYE_API_KEY")

# Bad: Hardcoded key
api_key = "sk_live_abc123..."  # Never do this!

Secure Communication

TLS Requirements

All API communications should use TLS 1.2 or higher:

  • Verify server certificates
  • Use modern cipher suites
  • Implement certificate pinning for high-security applications

Request/Response Validation

  • Validate all API responses before processing
  • Implement proper error handling
  • Never trust API responses implicitly
import requests

def query_intelligence(query):
    try:
        response = requests.get(
            "https://api.socialeye.net/v1/resolve",
            headers={"Authorization": f"Bearer {api_key}"},
            params={"query": query},
            timeout=30
        )
        response.raise_for_status()
        
        data = response.json()
        
        # Validate expected structure
        if not isinstance(data, dict):
            raise ValueError("Unexpected response format")
            
        return data
        
    except requests.exceptions.RequestException as e:
        # Log and handle appropriately
        log_error(f"API request failed: {e}")
        raise

Rate Limiting and Resilience

Respecting Rate Limits

APIs implement rate limits to ensure fair usage. Handle them gracefully:

import time
from functools import wraps

def rate_limit_handler(max_retries=3):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            for attempt in range(max_retries):
                try:
                    return func(*args, **kwargs)
                except RateLimitError as e:
                    if attempt < max_retries - 1:
                        wait_time = e.retry_after or (2 ** attempt)
                        time.sleep(wait_time)
                    else:
                        raise
        return wrapper
    return decorator

Circuit Breaker Pattern

Prevent cascade failures when APIs are unavailable:

  • Track failure rates
  • Open circuit after threshold exceeded
  • Periodically test for recovery
  • Provide fallback behavior

Data Handling

Minimizing Data Retention

  • Query only what you need
  • Implement appropriate retention policies
  • Encrypt sensitive data at rest
  • Log access for audit purposes

Caching Considerations

Caching can improve performance but requires careful handling:

  • Cache non-sensitive, relatively static data
  • Implement appropriate TTLs
  • Secure cache storage
  • Clear caches on security events

Monitoring and Alerting

What to Monitor

  • API response times
  • Error rates
  • Unusual query patterns
  • Key usage by application/environment

Alert Conditions

  • Sudden spike in API errors
  • Unusual query volumes
  • Requests from unexpected IPs
  • Authentication failures

Architecture Patterns

API Gateway Pattern

Centralize API access through a gateway:

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│ Application │────▶│ API Gateway │────▶│ SocialEye   │
│     A       │     │             │     │    API      │
└─────────────┘     │  - Auth     │     └─────────────┘
                    │  - Logging  │
┌─────────────┐     │  - Caching  │
│ Application │────▶│  - Rate     │
│     B       │     │    Limiting │
└─────────────┘     └─────────────┘

Benefits:

  • Centralized key management
  • Unified logging and monitoring
  • Consistent rate limiting
  • Simplified application code

Async Processing

For high-volume integrations, use async patterns:

  • Queue intelligence requests
  • Process asynchronously
  • Handle results via callbacks or polling
  • Implement dead-letter queues for failures

SocialEye API Integration

Quick Start

import requests

def socialeye_lookup(query, query_type="auto"):
    response = requests.get(
        "https://api.socialeye.net/v1/resolve",
        headers={
            "Authorization": f"Bearer {SOCIALEYE_API_KEY}",
            "Content-Type": "application/json"
        },
        params={
            "query": query,
            "type": query_type
        }
    )
    return response.json()

# Example usage
result = socialeye_lookup("[email protected]")

Webhook Integration

For real-time monitoring, use webhooks:

  • Configure endpoint in dashboard
  • Verify webhook signatures
  • Process events asynchronously
  • Implement idempotency

Conclusion

Secure API integration requires attention to authentication, communication security, error handling, and operational monitoring. By following these practices, you can safely leverage threat intelligence APIs while minimizing risk.


View our complete API documentation at docs.socialeye.net or get started with your API key today.

Ready to get started?

Start protecting your organization with real-time threat intelligence. 100 free lookups to get started.

Start Free Trial
SocialEye | Enterprise Social Intelligence Platform